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This paper presents an efficient numerical method for resolution correction, requiring no a 
priori knowledge. A spline function is determined such that its convolution with a spline 
approximation for the response function of the measuring device fits closely enough to the 
measured data. The number of knots of the spline and their positions are determined 
automatically. The algorithm expects a parameter to control the trade-off between the 
closeness of fit and the smoothness of spline approximation. Confidence limits for this 
smoothing factor are available if the statistical errors on the data points can be estimated. 

1. INTRODUCTION 

In many laboratory experiments, the finite resolution of the measuring device 
causes a non-negligible distortion of the original signal. The restoration of the signal 
is an important but also very difficult problem and it is not surprising, therefore, that 
the literature on this subject is nearly inexhaustible (for some recent publications see 
[ 12, 141 and the references therein). Mathematically, the deconvolution problem can 
be formulated as a linear integral equation of the first kind, i.e., 

y(x) = y r(u)./+ - u) du, (l-1) 
cc 

where r(x) is the resolution (or response) function of the measuring instrument 
(known either from measurements or through theoretical calculation), f(x) is the 
original signal and J’(X) is the distorted signal. It is known to be an ill-posed problem. 
Slight perturbations of y(y) might correspond to arbitrarily large perturbations on the 
solution f(x) due to the smoothing effect of integration. This is particularly 
troublesome since normally v(x) will be measured only as a finite, discrete set of data 
points (xq, JT~), q = 1, 2 ,..., m, with inevitably random noise on the y,-values. As a 
consequence, the deconvolution method will have to apply some regularization, i.e., 
some restriction on the class of approximating functions forf(x), otherwise it will be 
doomed to failure. 

The method presented in this paper will make use of spline functions. Suppose that 
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we have a finite interval [a, b] and a good spline approximation R(x) for T(X) on it 
such that replacing r by R and the infinite integration limits by a and b has little 
effect on (1.1). Then for an interval [c, d] with 

c < xq - a, d>x,-b (1.2) 

we will approximatef(x) by a second spline function S&X) such that 

&q ZY,. q = 1. 2 ,..., m. (1.3) 

with 

.4(X) 
&) = ) R(u) S(.K - u) du (1.4) 

. a(x) 

and 

a(x) = max(a, x - d), 

/3(x) = min(b, x - c). 
(1.5) 

For the determination of this spline we will adapt to our specific deconvolution 
problem the smoothing criterion for curve fitting described in [5 ] and [ 6 1. The basic 
idea will be to define a measure for the smoothness of S(X) as well as for the 
closeness of fit (1.3), and then to find a way to control, by a single parameter, the 
extent to which these two (very often contradictory) properties will be satisfied. The 
knots of s(x) will be automatically determined. 

2. SPLINE FUNCTIONS AND THEIR B-SPLINE REPRESENTATION 

Consider the strictly increasing sequence of real numbers 

c=t, < t, < ..a <t, < t,,+,=d. (2-l) 

The function s(x) is called a spline of degree 1 on [c, d], with knots tj, j = 1. 2,..., n, if 
the following conditions are satisfied: 

(i) In each interval [tj, tj+ ,I, j = 0, l,..., n, s(x) is given by some polynomial of 
degree I or less. 

(ii) s(x) and its derivatives of orders 1, 2,..., I- 1 are continuous everywhere in 
[G 4. 

If we introduce the additional knots 

(2.2) 
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then every such spline has a unique representation of the form 

n 
s(x) = y cjNj,l+ Ltx) 

jli 

in which Nj.,+, (x) denotes the normalized B-spline, defined as 

Nj.,+,(X)= (rj+,+l -~j)I~j,~j+~~...,~j+/+~I(. -x>‘+ 

(2.3) 

(2.4) 

with 

x: = (max(0, x))’ (2.5) 

and where [zj, zj+ ,,..., z~+~ ] H stands for the kth divided difference for the function 
H in the points zj ,..., z~+~, i.e., 

bil H = H(zj), 
(2.6) 

Normalized B-splines enjoy the interesting property that 

Nj./+ I(X) = 0 if x < tj or x> fj+l+lq (2.7) 

and they can be evaluated in a very stable way using the recurrence scheme of de 
Boor [2] and Cox [4]. Finally, we remark that s(x) becomes a single polynomial on 
[c, d] if the discontinuities of its Ith derivative at the interior knots l4 all vanish, i.e., 
if 

with 

-? b, jcj=O, 
jl/ 

q = 1) 2 ,...) n, 

bq,j = Nj!i+ ,(fq + 0) - N,!!i+ ,(t, - O), 

(2.8) 

b,,j = 0 if j<q-l-l or j>q, 

= C-l)‘+’ l!Cfj+f+l - fj) (2.9) 

q, ,kJ 
if q-l- 1 <j<q, 

and the prime denotes derivative with respect to t. 

(2.10) 
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3. THE DECONVOLUTION METHOD 

3.1. The Deconvolution Criterion 

Given a spline approximation R(X) for r(x) and the set of data values (x,, J?,) with 
weights We, q = 1, 2 ,..., m (x, < xq+ ,), we will determine a spline approximation S(X) 
forf(x), trying to find a compromise between the following objectives: 

(i) The convolution (1.4) of R(x) and s(x) should fit closely to the prescribed 
values Jr4. 

(ii) The approximating spline s(x) should be smooth, in the sense that the 
discontinuities in its Ith derivative are as small as possible. This will be our 
regularization. 

In order to formulate this criterion mathematically we introduce a measure of 
smoothness and a measure of closeness of fit. For the latter, the weighted sum of 
squared residuals 

m 

S(f) = 1 wq(,l', - g(x,)y 
q=l 

(3.1) 

can be taken. 6 is indeed a function of the B-spline coefficients E, as follows from 
(1.4) and (2.3), i.e., 

” 
dx) = s cjgj(-K) (3.2) 

j= -1 

with 

R(u) Nj.,+ 1(X- U) du. 

As a suitable smoothing norm, i.e., a measure of the lack of smoothness, 

v(E) = 1 
q=1 

(3.3) 

(3.4) 

is proposed. 
The deconvolution criterion is formulated mathematically as follows: 

minimize q(E), 

subject to the constraint 6(E) ,< S, 

(3.5) 

(3.6) 

where S is a non-negative constant which must be supplied by the user to control the 
extent of smoothing and therefore is called the “smoothing factor.” 
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3.2. Solution of the Minimization Problem 

Problem (3.5)-(3.6) is closely related to and can be solved in the same way as the 
minimization problem posed in the curve fitting algorihm [6]. It is easily verified 
that, using the method of Lagrange multipliers, this one finally results in the 
computation of the coefficients cj of a spline sp(x), defined for positive values of the 
Lagrange parameter p as the least-squares solution of the system 

fi k cjgj(xq)=\/w,Yq~ q = 1, 2 ,..., m, 
j=-/ 

q = 1) 2 )...) n, 

when p is given the value of the positive root of F(p) = S with 

R(u) sp(xq - u) du 
I’ 

. 

The system of Eq. (3.7) can be written in the matrix form 

QE=F 

with 

G= 

Q= ';"" , @= WJ 

fiB 
I I 0 ' 

dx 
w= 

0 

g-,(x,) ... &(X*) b I,-/ *.* b 1.n 
****.-.-.*.- 3 B= . . . . . . . . . . . . . 

g-,w *+* &thl) b n.-I ... b n.n 

(3.7) 

(3.8) 

(3.9) 

In Section 3.3 we will give conditions for the convolution matrix G to have full 
rank. In that case there is an unique least-squares solution of (3.9) for every p > 0. It 
can be determined in a stable way using an orthogonalization method. We have 
implemented a method which uses Givens rotations without square roots [9]. This is 
very suitable for our problem because the equations are treated row by row. So if 
(3.7) has to be solved for different values of p, the transformations on the first m 
rows of Q will be carried out only once. 

From (3.7) we can see that as p tends to infinity, sp(x) will tend to the least- 
squares spline S,(x), i.e., the spline with fixed knots rj, j = 1, 2,..., n, for which (3.1) 
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is minimal. Let F,(a) be the corresponding limit value of F(p). Also from (2.8) and 
(3.7) it follows that as p tends to zero, sp(x) will tend to P,(x), the polynomial of 
degree 1 for which (3.1) is minimal. The corresponding limit value of F is denoted by 

J’(O). 
Finally, we can prove (as in [5 ] or 161) that F is a convex and strictly decreasing 

function of p. Therefore we know that, once we have found a set of knots such that 

F,( 00 ) < S < F(0). (3.10) 

there exists an unique positive root p of F(p) = S. This p can quickly be found by 

means of an iterative scheme based on rational interpolation (61. 

3.3. On Calculating the Elements of the Convolution Matrix 

3.3.a. Direct computation. In this section we will show how the elements of the 
convolution matrix G, i.e., 

gj(xg) = !'"("' 
R(u) Nj.,+ ICxq - U) d" 

U(X,$ 

can be calculated in an accurate and efficient way. 
First of all from (2.7) it follows that 

gjCxq> = O if x,,<a+tj or x,&b+tj+,+,, (3.12) 

and, consequently, that G will have full rank if and only if there is at least one subset 
of (n + I + 1) strictly increasing x-values x,,, such that 

a + tj < xcj < b + tj+,+l, j = -1. -4 + I,..., n. (3.13) 

Ifa+tj<x,<b+tj+r+I the integration limits in (3.11) can be adjusted as follows: 

4x,) = ma& X, -  fj+ I  + , ) ,  

p(x,) = min(b, x, - t j ) .  

(3.14) 

Let R(x) be a spline function of degree k, with knots a = T,, < r, < --. < rh + , = b. 
Then the function R(u) N),,, ,(xq - u is a piecewise polynomial of degree k + I in u ) 
with knots at the points ri, i = 0, l,..., h + 1, and xq - ti, i =j,j + l,..., j + I+ 1. If we 
arrange these knots, say, Bi, such that 

a(x,)=8, < 8, < *.. < e,=p(x,) (3.15) 

(3.16) 
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Each integral in this sum can be numerically integrated exactly using a Gauss- 
Legendre formula of order (k + I + 2)/2. 

3.3.b. Recursive computation. In spite of this simple and apparently economical 
procedure, the computation of G is the most time-consuming step of all the decon- 
volution algorithm. However, G can also be computed recursively. If we add a knot 
to the set tj, j = 1, 2 ,..., n, and denote the new set and all related parameters by an 
asterisk, such that 

tj* = tj, j = -1, -1 + l,..., i, 

ti*+l E Cti7 ti+l)7 (3.17) 

ti*+ I = tj, j = i + 1, i + 2 ,..., n + I+ 1, 

then obviously 

Nj.l+ Ltx) = NjT,+ Itx>q j = -1, -1 + l,..., i - 1 - 1, 

= NJ? 1,/+ *(XL j = i + 1, i + 2 ,..., n. 
(3.18) 

Also, one can easily prove [ I] that 

(ti*+ 1 - ti*> wtr+z -ti*tJ NjJ+l(x)= (q?+,+,-q, NJLl(x)+ (ti*,,t,-tj*,,) Njc,,,,t,(x)9 
j=i-l,..., i. (3.19) 

Indeed, from (2.4) and (2.6) it follows that 

(ti*+ I - ti*> 
<q+k,,l - ti*> 

N&,(x)= (t:+, -t,f)[tj*,...,t,% t:+,, f:+p..,fj*+I+,](. -4: 

= rt,*, ,,..., t:, ti*, ,, ti*,, ,..., t,F+,+ l](. - x)i, 
- [ti*,..., ti’“, tf+2 ,..., ti*,,+ *I(. - xy+ . 

Likewise, 

(3.20) 

(ti*+r+* -tLJ 
(ti*,,+,- ti*,,) &L,dx)= bi*,l ,...v t), ti*,* ,..., ti*+,+J(. -x)‘, 

- Kt ,,“‘3 tT, ti*t , , ti*,* ,...) ti*,,+ ,I(. - x>y. 
(3.21) 

Adding (3.20) and (3.21), and using (2.6), (3.17) and (2.4), the right-hand side of 
(3.19) becomes 
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[f/*+lV.., q, 4++* ,..., ti*+,+J(- -x,: - [fj+ ,..., fi*, ti*+z )..., fj*,,+,](* -x)I, 
= ($+,+z - qwj”, fi*+ I,..., t:, fi*+z ,..., IT+,+ ,, fj*+/+J(. -x)‘, 

= (fj+[+l -fj)[fj9e*.9 Ii, fi+l*..., fj+,+l](’ -X)I, 

= Nj,l+ lCx)* (3.22) 

Q.E.D. 

It immediately follows from (3.11), (3.18) and (3.19) that 

L&J = gi* (x,)5 j = -I,..., i - 1 - 1, 

cc5 I - $f+? cv+,+2 -cl> 
= <q+,+, - fi*) G+YxJ + (fi*,,+, _ fi*,,) gJuxlJ j = i - I,..., i. 

= s:t 1 kJ7 j = i + l,..., n. 

(3.23) 

This means that if we have at our disposal the convolution matrix G and want to 
compute G*, only one new column must be calculated through integration (3.16), 
e.g., gi*-+,&&, 4 = 1, L., m; all the other columns are then easily obtained using 
(3.23). This saves a lot of time if the convolution matrix must be calculated for 
different sets of knots. 

3.4. The Strategy for Choosing the Knots 

Our strategy for choosing the knots will try to take account of the specific 
behaviour of the function J$X) underlying the data. However, it will not necessarily 
find the minimum number of knots nor their optimal positions. 

The chosen set must satisfy condition (3.10). It is easy to check that there exists at 
least one such set. If n = m - I - 1 and if, in locating the knots, condition (3.13) is 
satisfied, then the least-squares spline S,(x) with these knots has F,(co) = 0. 
Considering computation time and memory requirements, we are interested in a 
spline approximation with fewer knots. Therefore we determine the least-squares 
polynomial P[(x) which is simply the least-squares spline S,(x). If F,,(a) < S this 
polynomial is a solution of our problem. However, usually F,(a) > S. In that case 
we determine a number of least-squares splines Snj(x) with increasing number of 
knots, until Fnj(co) < S. To determine the number of knots to be added at each 
iteration we use the same formulae as in the curve fitting algorithm [6]. We take into 
account the number of knots added the last time and the result of these extra knots 
(the reduction in the sum of squared residuals &‘,._,(a~) - F,j(co )) as compared to 
what we hope to get with the new addition (a reducfion F,,i(oo) - S). 

To locate the knots, we first spread in a more or less meaningful way F,J 00) over 
the different knot intervals, hoping hereby to find those regions where the tit S,,(x) is 
poor. We compute the quantities 
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c&z -6 A I gitxql 
qc, q m -, I &(Xq)l ’ 

and 

i = -I,..., nj, 

k = 0, l,..., nj, 

(3.24) 

(3.25) 

(3.26) 

i.e., we compute for each basis function NiS,+, (x) its contribution ci to the total sum 
of squared residuals by using the elements of the convolution matrix as weighting 
factors. Then ti is spread over those intervals where Ni.,+ ,(x) is non-zero (positive), 
i.e., [fky tk+ ,I, k = i, i + 1,..., i + 1. As weighting factors here we use the integral value 
of the B-spline over the knot interval. Finally, note that the &values can easily be 
computed using the formulae of Gaffney [8] for integrating spline functions, i.e., 

J 
.tk+l 

6, = f(x) dx 
[k 

with 

f(x) = 5 diNi.,+ l(x) i=-/ 
and 

(I + l) ti 
di= (ti+,+, -tJ 

(3.28) 

(3.29) 

The additional knots are located midway in the intervals [tk, tk+ ,] with the largest 6,- 
numbers. Before adding the knot, however, we check whether condition (3.13) is 
fulfilled. We also allow more than one knot to be located in the interval [fk, t,, , 1. 
The new knot intervals also get b-numbers, i.e., 6, e 6,- ,/(a,-, + 6,+ ,) and 6, . 6,+ ,/ 
(6,-, + 6,+ r), respectively (or both 6,J2 if k = 0 or k = nj). Finally, since the knots 
are only added and not relocated we know that the sum of squared residuals must 
decrease, i.e., 

F!lj+,(CL)) ,<Fnj(m), F ,_ [ - , (O3)  = 0. (3.30) 

Hence, it is also valid to use the recursive procedure of Section 3.3.b for calculating 
the elements of the convolution matrices. 
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4. SOME PRACTICAL CONSIDERATIONS 

The algorithm described in the previous sections has been implemented in a 
Fortran subroutine package called DECOSP 171. 

All programs are written in Standard Fortran and have been checked with the 
PFORT verifier of Bell Labs. The package has been successfully implemented on an 
IBM 3033 and on a PDP 1 l/60 minicomputer. A magnetic tape copy of the package, 
together with an example program, can be obtained from the author. 

Apart from R(x), i.e., the spline approximation for the resolution function T(X), the 
set of data points (x,, y,) with the corresponding weights uYq and the degree I of the 
requested spline s(x), the user merely has to provide the smoothing factor S to 
control the trade-off between the “roughness” of the fit, as measured by the 
smoothing norm q (3.4), and the infidelity to the data, as measured by the weighted 
sum of squared residuals 6 (3.1). 

Recommended values of S depend on the relative weights wq. If these are taken as 
(a~~)-‘, with 6y, an estimate of the standard deviation of y,, then a good S-value 
should be found in the range m f ~‘2% [ 131. If nothing is known about the statistical 
error in JJ~, each njq can be set equal to one and S can be determined by trial and 
error. To decide whether an approximation corresponding to a certain S is 
satisfactory or not, the user should then examine the results graphically. i.e., by 
plotting s(x) and by comparing g(x) against the data values y4. If S is too large the 
spline will be too smooth and signal will be lost (underfit); g(x) will fit not closely 
enough to the y,-values. If S is too small, too much noise will be picked up and s(x) 
will reflect some unrealistic peaks and oscillations. 

Note that an appropriate smoothing factor principally depends on the accuracy of 
the measured data values yp and not on the signal itself (as contrasted, e.g., with an 
appropriate position for the knots of s(x)). Therefore, after having corrected a number 
of signals (possibly corresponding to an exactly known input) the user will certainly 
have a good idea in what range to choose the smoothing factor. The algorithm will 
then automatically adapt itself to other signals. 

To economize the search for a good S-value DECOSP provides different modes of 
computation. At the first call of the routine or whenever he wants to restart with the 
initial set of knots (see Section 3.4), the user must set a parameter IOPT = 0. If 
IOPT = 1 the program will continue with the set of knots found at the last call to the 
routine. So, if the user wishes to call DECOSP repeatedly with decreasing S-values, 
he can save a lot of computation time by specifying IOPT = 1 from the second call 
on. Also, if he wants to calculate another spline corresponding to new data values y4 
or weights wq, he can start with the last found set of knots but then, in addition to 
IOPT = 1, he must reset a second parameter IFLAG = 0. 
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5. NUMERICAL RESULTS 

The present method was applied to tests taken form [ 12, 141 and to variants of 
these. We report some of the results and illustrate how our deconvolution algorithm 
can be used efficiently. 

In each example a known function f(x) is convolved with a known resolution 
function r(x). The resulting function v(x) is sampled at different points xq, 
q = 1, 2,..., m, and pseudo-random noise is added to simulate experimental data 
values yg. 

In the examples where r(x) cannot be represented by a first-degree spline, we 
determine a cubic spline approximation R(x) using a curve fitting algorithm (see, e.g., 
[3,6]). Then the deconvolution algorithm can be applied. The computed spline s(x) is 
plotted against the exact functionf(x). To indicate the quality of approximation we 
calculate the overall error [ 11, 141: 

ERROR = l/m 2 (s(xg) -f(x,))’ 
I 

l/2 

I I 
max(lf(xJ, q = 1, L., m I. (5.1) 

q=1 

5.1. Example 1 

In the first example we check the influence of the smoothing factor S and illustrate 
how to iteratively find an appropriate value for this parameter. 

We use the test data of Johnson [ 11, 141 which are listed in Table I. If f(x) and 
r(x) are both Gaussian, i.e., 

f(x)=Lexp -$ 
Offi ( ) f 

and 

r(x) = 
1 -X2 

or 6 
exp 20: ’ ( 1 

then y(x) is also Gaussian with a standard deviation uY = d-T. The data of 
Johnson were obtained for of = 1 and ur = 0.7; J’(X) was sampled at the points 
xq = 0.2(q - 22), q = 1, 2 ,...) 44, and normally distributed noise with a standard 
deviation of 2% was added to the y(x,)-values. In Fig. 1 the data points (x,, v,) are 
marked with crosses. 

Before applying our deconvolution algorithm we must find a spline approx;. ration 
R(x) for r(x). In order to reduce the computation time in our algorithm (see Section 
3.3a), we seek a spline of low degree with not too many knots. Actually we determine 
a cubic (k = 3) spline approximation for the interval [a, b] = [-3, 3] using a least- 
squares spline algorithm (nearly every software library contains such a program). 
The knots and B-spline coefficients of R(x) are given in Table II. Then we seek a 
good cubic (I = 3) spline approximation s(x) for f(x) on the interval [c, d] = [-4.4, 



a 

o-s- V(X) a-5- f(X) 

g(x) S(X) 

. . . 
0.3- 0.3- ,’ ** 

I I I I I I I I IX 

-4 -2 0 2 4 -4 -2 0 2 4 

b 

Os5- v(x) o*5- f(x) 

g(x) s(x) 

0.3- 
..- 

a.3 - 

I I I I I I I I IX I I 1 I I I I I IX 

-4 -2 0 2 4 -4 -2 0 2 4 

C 

0.5, V(X) o-5- f(x) 

g(x) s(x) 

0.3- 0.3- 

I 1 I I I !  I I IX 1 I I I I I I I IX 

-4 -2 0 2 4 -4 -2 il 2 4 

FIG. 1. Deconvolution of Johnson’s data with weights wq = a-‘, showing the influence of the 
smoothing factor: (a) S B 0, (b) S = 500, (c) S = 44, (d) S = 38. (e) .S = 34, (r) S = 38 
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'5, y(x) 0.5 

g(x) 

J I ’ I ’ I 1 I 1 
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-4 -2 0 2 4 -4 -2 0 2 4 

FIGUK~ 1 (continued) 
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TABLE I 

Johnson’s Test Data 

4 XP 4 

1 -4.2 0.001 23 0.2 0.328 
2 -4.0 0.002 24 0.4 0.305 
3 -3.8 0.003 25 0.6 0.295 
4 -3.6 0.004 26 0.8 0.259 
5 -3.4 0.007 27 1.0 0.229 
6 -3.2 0.010 28 1.2 0.196 
7 -3.0 0.016 29 1.4 0.167 
8 -2.8 0.023 30 1.6 0.140 
9 -2.6 0.034 31 1.8 0.108 

10 -2.4 0.046 32 2.0 0.084 
11 -2.2 0.066 33 2.2 0.065 
12 -2.0 0.085 34 2.4 0.048 
13 -1.8 0.107 35 2.6 0.034 
14 -1.6 0.140 36 2.8 0.024 
15 -1.4 0.166 37 3.0 0.016 
16 -1.2 0.206 38 3.2 0.011 
17 -1.0 0.236 39 3.4 0.007 
18 -0.8 0.269 40 3.6 0.004 
19 -0.6 0.293 41 3.8 0.003 
20 -0.4 0.303 42 4.0 0.002 
21 -0.2 0.326 43 4.2 0.00 I 
22 0.0 0.321 44 4.4 0.0 

4.41 by using subroutine DECOSP. We shall call this routine repeatedly with 
decreasing S-values until a satisfactory result is obtained. But first, we determine the 
weights u’~. In order to check the confidence interval for S we calculate an estimate 6 
of the standard deviation of the J’,-values, i.e., 

4 = 1, 2 . . . . . 44, 

ij* = 5 (p - e,)‘/43, 

and we set the weights w, = a-*. A good S-value should be found in the range 
[m - &ii;;, m + &ii] z [35,53]. H owever, we will not further use this information 
and make as if 6-* is an arbitrary constant (this would then correspond to setting 
)t’q = 1 and multiplying the succeeding smoothing factors S by a*). 

If initially we call DECOSP with a very large smoothing factor S, the program 
returns the least-squares polynomial PJx) (i.e., the least-squares spline S,(x) without 
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TABLE II 

The Knots and B-Spline Coefficients of the Cubic Spline 
Approximation for r(x) = exp(-x*/0.98)/(0.7 fi). -3 < x < 3 

i 
Knots 

5 i 

B-spline coefficients 
4 

-3 -3.0 
-2 -3.0 
--I -3.0 

0 -3.0 
I -2.2 
2 -1.4 
3 -1.0 
4 -0.6 
5 -0.3 
6 0. 
7 0.3 
8 0.6 
9 1.0 

10 1.4 
I1 2.2 
12 3.0 
13 3.0 
14 3.0 
15 3.0 

0.000131 
-0.000124 
-0.000218 

0.022900 
0.191249 
0.382632 
0.533457 
0.588262 
0.533457 
0.382632 
0.191249 
0.022900 

-0.0002 18 
-0.000 124 

0.000 I3 1 

interior knots) and the corresponding weighted sum of squared residuals F(0). 
Figure la shows the result; on the right we see that s(x) = P3(x) (full line) is a poor 
approximation for f(x) (dashed line). This is not surprising since g(x), the 
convolution of R(x) and s(x), also poorly approximates y(x). 

So we then proceed by calling DECOSP with decreasing S-values less than F(0) 
(e.g., F(O)/lO, F(O)/lOO,...). Figure lb shows the result according to S = 500. We still 
have oversmoothing; s(x) now is a spline with n = 3 interior knots, the position of 
which is given by the vertical lines. According as g(x) fits closer to the data values 
(x,, y,) we decrease the smoothing factor more carefully (e.g., S = 250, 100, 50,...). 
Figure lc shows the result according to S = m = 44; g(x) is a good approximation 
for y(x) and the quality of s(x) is actieptable. Decreasing the smoothing factor a bit 
more produces even better results. Figure Id shows the approximation according to 
S = 38. This spline has the same knots (n = 5) as the spline of Fig. lc but less 
smoothing is applied. The overall error (5.1) is 1.36% whereas Johnson [ 111 obtains 
2.796 and Verkerk [ 141 1.3%. 

Now, if we still decrease S a little more we suddenly get “overfitting.” The approx- 
imation of Fig. le, which corresponds to S = 34, shows some unrealistic wiggles and 
peaks, telling us that we have gone too far. From the second call of the routine we 
have used the mode of computation IOPT = 1 (see Section 4). So we always continue 
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with the set of knots found at the last call, saving a lot of computation time in this 
way. So if we finally calculate a new approximation s(x) according to S = 38 we get 
a spline with the same knots (n = 8) as the one corresponding to S = 34. The result 
can be seen in Fig. If. The quality of fit is the same as for the spline in Fig. Id. So. 
the fact that we can obtain a good approximation even if the number of knots is too 
high clearly demonstrates the regularization in our algorithm. 

5.2. Example 2 

In the preceding example all data points had the same weight. However. it would 
be better to give the points around the peak a relatively smaller weight, since 
statistical error is proportional to y4. To check the influence of individual weighting, 
we use Johnson’s data with wq = (y4 -47(x,))-*. On the assumption that the spline 
s(x) to be expected is such that g(x,) =y(x,), q = 1, 2,..., m. then from (3.8) we can 
compute the corresponding smoothing factor, i.e., S = m = 44. The results, for 
different degrees of spline approximation, are shown in Fig. 2. The overall error (5.1) 
of the cubic spline in Fig. 2a is only 0.7%. 

5.3. Example 3 

In their tests McKinnon et al. [ 12) simulate photoluminescence data by means of 
the resolution function r(x) = 5.802~’ exp(-0.4x). Using a variant of the curve fitting 
algorithm in [6], we approximate this function on the interval [O. 25) by a cubic 
spline R(x) with boundary conditions R(0) = R’(0) = 0. The knots and B-spline coef- 
ficients of R(x) are given in Table III. 

Then we generate a set of normally distributed stochastic variates e4 (expected 
value 0, standard deviation 0.01) and consider the data 

x, = q/4 
q = 1, 2 ,.... 200, 

yq = j: r(x>f(x, - x) dx) (1 + e,), 

in order to find a cubic spline approximation for 

f(x)=O.l exp(-0.02x)+0.01/( (%)‘+0.05) 

using subroutine DECOSP. Since the errors are proportional to the y4 we set 
ujq = Jr;*. From (3.8) we find an estimate for the smoothing factor. i.e., 

200 

S g C ei/( 1 + e4)* Z 0.02. 
q=l 

Figure 3 shows the results according to S = 0.018 and for A = 12.5 (Fig. 3a), resp. 
A = 25 (Fig. 3b). The overall error (5.1) is 0.77%, resp. 0.70%. This example 
illustrates that our algorithm is adaptive in placing the knots (see the vertical lines). 



a 

O-4, f(x) 

s(x) 

0.3 - 

0.2 - 

0.1 - 

0.0 - 

I I I I I I I I I x 

-4 -2 0 2 4 

b 

Oe4- f(x) 

s(x) 

0.3 - 

0.P - 

0.1 - 

0.0 - 

I I I I I 1 I I I x 

-4 -2 0 2 4 

C 

O**- f(x) 

s(x) 

0.3 r 

O*P - 

0.1 - 

04 - 

I I I I I I I I I x 

-4 -@ 0 2 4 

FIG. 2. Deconvolution of Johnson’s data with weights wq = (J’, -y(x,))-* and using different 

degrees of spline approximation: (a) I= 3, (b) I = 2, (c) I= I. 
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TABLE III 

The Knots and B-Spline Coefficients of the Cubic Spline 
Approximation for r(x) = 5.802~’ exp(-0.4vr). 0 < x < 25 

i 
Knots B-spline coeflicients 

r i 4 

-3 0. 0. 
-2 0. 0. 
-1 0. 3.01567 

0 0. 10.6970 
1 I. 17.68 11 
2 1.75 20.3386 
3 3.25 18.7294 
4 4.75 15.4066 
5 6.25 10.4402 
6 8. 3.61714 
7 9.5 0.60307 1 
8 12.5 0.2895 18 
9 18.75 0.163039 

10 25. 
II 25. 
12 25. 
13 25. 

In both cases there is a concentration near the peak. The concentration of knots and 
the oscillations of s(x) near the origin can be somewhat explained by the excessively 
large weights for the data points in that region. 

5.4. Example 4 

In the next example we illustrate how DECOSP can be used efficiently in case 
several similar signals coming from the same device are to be deconvolved. We 
consider the response function T(X) = max{O, (1 - ]x]/o,)/a,)} [ 141 with ur = 0.1. It 
can be represented as a first-degree spline with knots r_, = r, = -(T,., r, = 0, r1 = 
r3 = cr and B-spline coefficients d-, = d, = 0, d, = l/a,. The different functions we 
want to restore on the interval [-OS, OS] are 

A(x) = sin(4nx + ai) + COS(~RX)/~ 

with 

ai= (i- l)n/16, i = 1, 2 ,..., 32. 

Then from (1.1) it is easily verified that the distorted signals are 

Y,(X) = 
2( 1 - cos 47ru,) 

(47&Y 
sin(4nx + a,) + (’ (ios yyr) 

=uf(l, 
cos(87rx). 



a 

0.28 

b 

r(x) 
Y(X) 

f(x) 

I 
i 

5 

f(x) -0 
s(x) 

4 
i # 

; I (Xq.Yq) -0 
?s 

-28 

-20 

.12 

.04 

FIG. 3. Deconvolution of simulated data according to f(x) = 0.1 exp(-0.02x) + O.Ol/ 
(((x -A)/12.5)* + 0.05) and r(x) = 5.802~’ exp(-0.4x): (a) A = 12.5, (b) A = 25. 
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The data points are obtained as follows. Using a random number generator we 
generate sets of normally stochastic variates e,,i with expected value 0 and standard 
deviation 0.01, and then for i = 1, 2,..., 32 we consider the data 

xq= (q- 51)/100. 

Yq,i=4’i(xq) + eq.;. 

IYq = (0.01))2, q = 1, 2 )...) 101. 

Although the spline approximations si(x) will only be used in [-0.5,0.5] we set the 
approximation interval [c, d] = [-0.5 - urr 0.5 + a,]. In this way no errors are 
introduced by breaking up the infinite integration interval in (1.3)-( 1.4)--( 1.5). 

Further, we select seven values out of the confidence interval for the smoothing 
factor, i.e., Sj = 120 - 5j, j = 1, 2 ,..., 7. Then we determine successively spline 
approximations according to these decreasing smoothing factors and proceed with the 
next data set as soon as the corresponding overall error (5.1) drops below some 
preset value (actually we require an error of 1.35%). So, we simulate the action of a 
user who knows from experience in what range to choose the smoothing factor and 
then effectively tries some S-values until he can accept (through graphical inspection) 
the corresponding approximation as being satisfactory. 

The results of our test are summarized in Table IV. For each data set we give the 

TABLE IV 

Deconvolution of Simulated Data According to f(x) = sin(4n,v + a;) + 0.5 cos(8rru) and 
T(,Y) = max(0, lO( I - 10 Ixl)t (ERROR and TIME results in brackets correspond to a smoothing 

factor S = 115) 

ERROR Time ERROR Time 
i ai S (96,) (set) i a, s PO) (set 1 

1 0 90 
2 R/16 100 

3 RI8 90 
4 3~116 115 

5 rr/4 100 
6 57r/16 85 
1 3n/8 85 
8 71r/l6 I10 

9 7712 90 
10 91r/16 115 
11 5x/8 85 
12 117r/16 110 
13 3X/4 115 
14 13n/16 90 
15 7lr/8 85 
16 15x/16 85 

1.18(1.70) 
1.30(1.48) 
1.23(1.71) 
1.18(1.18) 
1.15( 1.57) 
1.28(1.79) 
1.32(1.71) 
1.29(1.38) 
1.33(1.87) 
1.08(1.08) 
l.Sl(1.95) 
1.29(1.37) 
1.23(1.23) 
1.29(1.66) 
1.52(1.85) 
1.67(1.93) 

1.45(1.08) 
0.27(0.12) 
0.35(0.12) 
0. 10(0.10) 
0.24(0.1 I ) 
0.42(0.11) 
0.43(0.1 I) 
0.14(0.10) 
0.35(0.10) 
0.11(0.11) 
0.42(0.11) 
0.17(0.11) 
O.lO(O. 10) 
0.38(0.13) 
0.47(0.13) 
0.51(0.13) 

17 R 90 
18 17~116 95 
19 9~18 100 
20 19~116 115 
21 57[/4 85 
22 21rr/16 100 
23 1 lrr/8 95 
24 23~116 115 
25 3~12 90 
26 25~116 115 
27 13~18 95 
28 27~116 100 
29 7Rf4 105 
30 29~116 90 
31 15n/8 115 
32 31rr/16 90 

1.30( 1.63) 
1.26(1.50) 
1.25(1.50) 
1.29( 1.29) 
1.29(1.54) 
1.31(1.50) 
1.25(1.62) 
1.21(1.21) 
1.23(1.62) 
1.29( 1.29) 
1.30(1.54) 
1.27(1.46) 
1.30( 1.40) 
1.32(1.64) 
1.23( 1.23) 
1.21(1.69) 

0.37(0. I I ) 
0.32(0. I I ) 
0.27(0. I I) 
0.12(0.12) 
0.49(0.13) 
0.27(0. I I ) 
0.33(0.13) 
0.1 l(O.1 I) 
0.37(0.1 I ) 
0.1 l(0.l I) 
0.34(0. I I ) 
0.27(0.1 I ) 
0.23(0.13) 
0.39(0.13) 
0.1 I(.01 I) 
0.36(0.12) 
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ultimate smoothing factor S,, the corresponding overall error (5.1) and the total time 
needed on an IBM 3033 to determine the approximations according to S,, SZ,..., S,. 
From the second call of the routine DECOSP we set IOPT = 1 (see Section 5.1). So 
we always continue with the set of knots found at the last call of the routine. In this 
example all selected spline approximations si(x) have the same knots, i.e., 
pi Ij = 0, l,..., n + 1) = (-0.6, -0.45 (0.075) 0.45,0.6) (n = 13). Consequently, the 
corresponding convolution matrix has to be calculated only once, i.e.. with the first 
data set. The gain in time for the following data sets clearly appears in Table IV. 
Each time we proceed with a new data set we must reset IFLAG = 0 (see Section 4). 
Since we do not store the Givens transformations and have a new right-hand side @ 
(3.9) we must also retriangularize the convolution matrix. The computation time for 
this depends linearly on the number of data points. If we proceed with a new 
smoothing factor Sj, we keep IFLAG = 1. In that case the convolution matrix must 
not be retriangularized (see Section 3.2) and computation time now mainly depends 
on the number of B-spline coefficients and on the number of iterations to find the root 
of F(p)=Sj. 

The total time for determining the 32 spline approximations (139 calls of 
DECOSP) is about 10.5 set and the mean error is 1.28%. Some of the splines si(x) 
are shown in Fig. 4. To simulate the use of DECOSP in a fully automatic way, we 
report in Table IV the ERROR and time results according to the same smoothing 
factor S = 115 for all data sets. (It is safer to choose the smoothing factor too large 
rather than too small.) The total time for 32 calls of DECOSP is about 4.5 set and 
the mean error is 1.54%. 

5.5. Example 5 

In a last test taken from [ 10, 141 f( x is a sum of two exponentials, i.e., ) 

f(x) = exp (- (” ::“” )‘) +exp (-( “,:““)‘), 

and the resolution function r(x) which is rectangular. i.e., 

r(x) = 1, 1x1 < 125, 

= 0, I-4 > 125, 

can be represented as a first-degree spline with knots r-, = r, = -125, r1 = r2 = 125 
and B-spline coefficients d-, = d, = 1. The distorted signal y(x) is sampled at 250 
points xq = 4(q - 125), q = 1, 2,..., 250, and the data values y4 contain pseudo- 
random noise uniformly distributed on [-5,5]. The weights are all set equal to one. 
Figure 5 shows the data points (x~, y,), the exact function f(x) (dashed line) and the 
cubic spline approximation s(x) according to a smoothing factor S = 2110 (full line). 
The overall error (5.1) is 2.8% whereas Hunt [lo] obtains 2.1% and Verkerk [ 141 
3.1%. 



a b 

l- 

d 

l- 

I 1 1 I 1 
-0.4 0.0 0.4 -0.4 0.0 0.4 

e f 

1 I I 1 1 1 I I I I 
-0.4 0.0 0.4 -0.4 0.0 0.4 

FIG. 4. Deconvolution of simulated data according to f(x) = sin(4nx + a) + 0.5 cos(87r.x) and- 
r(x) = max(0, lO(1 - 10 1x1)}: (a) a = 0, (b) a = 5x/16, (c) cz = 5x/8. (d) a = 15x/16, (e) a = k/4. (f) 

a = 25~116. 
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-400 -200 0 200 400 

FIG. 5. Deconvolution of simulated data according to f(l) = exp(-((.r + 100)/75)‘) + 
exp(-((x - 100)/75)‘) and r(x) = 1, 1x1 < 125. r(x) = 0, 1.~1 > 125. 

6. CONCLUDING REMARKS 

In the preceding sections we have described an algorithm for data deconvolution 
using spline functions. It is assumed that the response function of the measuring 
device is translation invariant and that it can be approximated properly by a spline 
R(x). A second spline function s(x) is then determined such that its convolution with 
R(x) fits to the given data measurements. R(x) and s(x) are represented by B-splines. 
Hence, evaluation, differentiation and integration can be performed in a rapid and 
accurate way while using the recurrence schemes for evaluating [2,4], differentiating 
[2] and integrating [8] B-splines. 

The deconvolution method uses no a priori knowledge of the function to be aprox- 
imated and as opposed to methods which apply discrete and fast fourier transform 
techniques no restrictions on the number or position of the data points are imposed. 
The method also allows individual weighting of the data points. 

Besides R(x), the set of data points with the corresponding weights and the degree 
of s(x), the user merely has to provide a positive parameter S to control the 
smoothness of s(x). The number of knots and their position are then determined 
automatically, trying to take account of the specific behaviour of the signal 
underlying the data. Normally the number of knots will be considerably less than the 
number of data points, saving a lot of computation time and memory. 

The smoothing factor S has to be chosen carefully: too large S-values will result in 
an underfitting of the data, and too small S-values will yield a spline which is highly 
influenced by the errors on the data points. Confidence limits for S are available if 
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the statistical errors on the data points can be estimated. However. the user should 
examine the deconvolution results graphically before accepting the fit as satisfactory. 
The computer program DECOSP which is based on the deconvolution algorithm 
provides a mode of computation through which a good S-value can be found in a 
very economical way. As for the degree of s(x), cubic splines are recommended. This 
will usually give a good compromise between efficiency (computation time) and 
quality of fit. The proposed method could easily be extended to deal with other than 
spline approximations for the resolution function or even with cases where the 
response function is not translation invariant. In fact, only the direct computation of 
the elements of the convolution matrix involved (Section 3.3.a) should then be 
adjusted. 
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